引言:为什么文档解析是RAG的基石?
在RAG(检索增强生成)系统中,文档解析是整个知识库构建的第一步,也是最关键的一步。就像建房子需要打好地基一样,良好的文档解析质量直接决定了后续检索和生成的效果。今天,我们就深入探讨RAG索引流程中的文档解析技术。
一、RAG文档解析的整体架构
首先,让我们通过一个流程图了解完整的解析流程:
1┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐ 2│ │ │ │ │ │ 3│ 原始文档集合 │───▶│ 文档解析与拆分 │───▶│ 文本向量化 │ 4│ │ │ │ │ │ 5└─────────────────┘ └─────────────────┘ └────────┬────────┘ 6 │ 7┌─────────────────┐ ┌─────────────────┐ │ 8│ │ │ │ ▼ 9│ 元数据提取 │◀───│ 语义分块 │ ┌─────────────────┐ 10│ │ │ │ │ │ 11└─────────────────┘ └─────────────────┘ │ 向量存储索引 │ 12 │ │ 13 └─────────────────┘ 14
二、文档解析的核心步骤详解
2.1 支持多种文档格式
实际项目中,文档格式多种多样。我们需要一个能处理各种格式的解析器:
1import os 2from typing import List, Dict, Any 3from langchain.document_loaders import ( 4 PyPDFLoader, 5 Docx2txtLoader, 6 UnstructuredHTMLLoader, 7 UnstructuredMarkdownLoader, 8 TextLoader 9) 10from langchain.schema import Document 11 12class MultiFormatDocumentParser: 13 """多格式文档解析器""" 14 15 def __init__(self): 16 self.format_handlers = { 17 '.pdf': self._parse_pdf, 18 '.docx': self._parse_docx, 19 '.html': self._parse_html, 20 '.htm': self._parse_html, 21 '.md': self._parse_markdown, 22 '.txt': self._parse_text, 23 } 24 25 def parse_document(self, file_path: str) -> List[Document]: 26 """解析单个文档""" 27 ext = os.path.splitext(file_path)[1].lower() 28 29 if ext not in self.format_handlers: 30 raise ValueError(f"不支持的文件格式: {ext}") 31 32 return self.format_handlers[ext](file_path) 33 34 def _parse_pdf(self, file_path: str) -> List[Document]: 35 """解析PDF文档""" 36 loader = PyPDFLoader(file_path) 37 documents = loader.load() 38 39 # 提取PDF元数据 40 for doc in documents: 41 doc.metadata.update({ 42 'source': file_path, 43 'format': 'pdf', 44 'total_pages': len(documents) 45 }) 46 47 return documents 48 49 def _parse_docx(self, file_path: str) -> List[Document]: 50 """解析Word文档""" 51 loader = Docx2txtLoader(file_path) 52 documents = loader.load() 53 54 # 添加文档结构信息 55 for doc in documents: 56 doc.metadata.update({ 57 'source': file_path, 58 'format': 'docx' 59 }) 60 61 return documents 62 63 def _parse_html(self, file_path: str) -> List[Document]: 64 """解析HTML文档""" 65 loader = UnstructuredHTMLLoader(file_path) 66 return loader.load() 67 68 def _parse_markdown(self, file_path: str) -> List[Document]: 69 """解析Markdown文档""" 70 loader = UnstructuredMarkdownLoader(file_path) 71 return loader.load() 72 73 def _parse_text(self, file_path: str) -> List[Document]: 74 """解析纯文本文档""" 75 loader = TextLoader(file_path, encoding='utf-8') 76 return loader.load() 77 78# 使用示例 79parser = MultiFormatDocumentParser() 80documents = parser.parse_document("example.pdf") 81
2.2 智能文档分块策略
文档分块是解析的核心环节,直接影响检索质量:
1from langchain.text_splitter import ( 2 RecursiveCharacterTextSplitter, 3 TokenTextSplitter, 4 MarkdownHeaderTextSplitter 5) 6import re 7from typing import List 8 9class SmartChunker: 10 """智能文档分块器""" 11 12 def __init__(self, chunk_size: int = 1000, chunk_overlap: int = 200): 13 self.chunk_size = chunk_size 14 self.chunk_overlap = chunk_overlap 15 16 # 初始化不同的分块器 17 self.recursive_splitter = RecursiveCharacterTextSplitter( 18 chunk_size=chunk_size, 19 chunk_overlap=chunk_overlap, 20 separators=["\n\n", "\n", "。", "!", "?", ";", ",", " ", ""] 21 ) 22 23 self.token_splitter = TokenTextSplitter( 24 chunk_size=chunk_size, 25 chunk_overlap=chunk_overlap 26 ) 27 28 def semantic_chunking(self, text: str, doc_type: str = None) -> List[str]: 29 """语义感知的分块""" 30 31 # 根据文档类型选择分块策略 32 if doc_type == 'markdown': 33 return self._markdown_chunking(text) 34 elif self._is_code_document(text): 35 return self._code_chunking(text) 36 else: 37 return self._semantic_paragraph_chunking(text) 38 39 def _markdown_chunking(self, text: str) -> List[str]: 40 """Markdown文档分块""" 41 headers_to_split_on = [ 42 ("#", "标题1"), 43 ("##", "标题2"), 44 ("###", "标题3"), 45 ] 46 47 markdown_splitter = MarkdownHeaderTextSplitter( 48 headers_to_split_on=headers_to_split_on 49 ) 50 51 chunks = markdown_splitter.split_text(text) 52 return [chunk.page_content for chunk in chunks] 53 54 def _code_chunking(self, text: str) -> List[str]: 55 """代码文档分块""" 56 # 按函数、类、方法进行分块 57 patterns = [ 58 r'(def\s+\w+(.*?):.*?(?=\n\s*def|\Z))', # 函数 59 r'(class\s+\w+(.*?):.*?(?=\n\s*class|\Z))', # 类 60 r'(//\s*===.*?===)', # 注释区块 61 ] 62 63 chunks = [] 64 for pattern in patterns: 65 chunks.extend(re.findall(pattern, text, re.DOTALL)) 66 67 return chunks if chunks else self.recursive_splitter.split_text(text) 68 69 def _semantic_paragraph_chunking(self, text: str) -> List[str]: 70 """语义段落分块""" 71 # 先按段落分割 72 paragraphs = re.split(r'\n\s*\n', text) 73 74 chunks = [] 75 current_chunk = "" 76 77 for para in paragraphs: 78 para = para.strip() 79 if not para: 80 continue 81 82 # 如果当前块加上新段落不超过限制,就合并 83 if len(current_chunk) + len(para) + 1 <= self.chunk_size: 84 if current_chunk: 85 current_chunk += "\n\n" + para 86 else: 87 current_chunk = para 88 else: 89 # 保存当前块,开始新块 90 if current_chunk: 91 chunks.append(current_chunk) 92 current_chunk = para 93 94 # 添加最后一个块 95 if current_chunk: 96 chunks.append(current_chunk) 97 98 return chunks 99 100 def _is_code_document(self, text: str) -> bool: 101 """判断是否为代码文档""" 102 code_keywords = ['def ', 'class ', 'import ', 'function ', 'var ', 'let ', 'const '] 103 return any(keyword in text[:500] for keyword in code_keywords) 104 105# 使用示例 106chunker = SmartChunker(chunk_size=1000, chunk_overlap=200) 107chunks = chunker.semantic_chunking(large_text_document, doc_type='markdown') 108
2.3 高级元数据提取
元数据能显著提升检索精度:
1import hashlib 2from datetime import datetime 3import pytz 4from langchain.schema import Document 5 6class MetadataExtractor: 7 """元数据提取器""" 8 9 def __init__(self): 10 self.zh_timezone = pytz.timezone('Asia/Shanghai') 11 12 def extract_document_metadata(self, 13 content: str, 14 file_path: str, 15 doc_type: str) -> Dict[str, Any]: 16 """提取文档元数据""" 17 18 metadata = { 19 'source': file_path, 20 'doc_type': doc_type, 21 'file_name': os.path.basename(file_path), 22 'file_size': os.path.getsize(file_path), 23 'last_modified': self._get_file_mtime(file_path), 24 'content_hash': self._calculate_content_hash(content), 25 'chunk_count': 0, 26 'total_length': len(content), 27 'indexing_time': datetime.now(self.zh_timezone).isoformat(), 28 } 29 30 # 提取内容相关元数据 31 content_metadata = self._extract_content_metadata(content) 32 metadata.update(content_metadata) 33 34 return metadata 35 36 def _extract_content_metadata(self, content: str) -> Dict[str, Any]: 37 """从内容中提取元数据""" 38 39 # 提取标题 40 title = self._extract_title(content) 41 42 # 提取关键词(简单实现) 43 keywords = self._extract_keywords(content) 44 45 # 提取文档结构信息 46 structure_info = self._analyze_structure(content) 47 48 # 提取时间信息 49 time_info = self._extract_time_info(content) 50 51 return { 52 'title': title, 53 'keywords': keywords, 54 'sections': structure_info.get('sections', []), 55 'paragraph_count': structure_info.get('paragraph_count', 0), 56 'mentioned_dates': time_info, 57 'language': self._detect_language(content), 58 'has_tables': self._has_tables(content), 59 'has_code_blocks': self._has_code_blocks(content), 60 } 61 62 def _extract_title(self, content: str) -> str: 63 """提取文档标题""" 64 # 尝试从开头或Markdown标题中提取 65 lines = content.strip().split('\n') 66 67 for line in lines[:10]: # 检查前10行 68 line = line.strip() 69 # Markdown标题 70 if line.startswith('# '): 71 return line[2:].strip() 72 # HTML标题标签 73 if '<h1>' in line.lower(): 74 match = re.search(r'<h1[^>]*>(.*?)</h1>', line, re.IGNORECASE) 75 if match: 76 return match.group(1).strip() 77 78 # 如果没有明确标题,使用第一行非空内容 79 for line in lines: 80 if line.strip() and len(line.strip()) > 10: 81 return line.strip()[:100] 82 83 return "未命名文档" 84 85 def _extract_keywords(self, content: str, top_n: int = 10) -> List[str]: 86 """提取关键词(简化版)""" 87 # 移除常见停用词 88 stop_words = {'的', '了', '在', '是', '我', '有', '和', '就', '不', '人', '都', '一', '一个'} 89 90 # 中文分词(简化处理) 91 words = re.findall(r'[\u4e00-\u9fff]{2,}', content) 92 93 # 统计词频 94 word_freq = {} 95 for word in words: 96 if word not in stop_words: 97 word_freq[word] = word_freq.get(word, 0) + 1 98 99 # 返回频率最高的词 100 sorted_words = sorted(word_freq.items(), key=lambda x: x[1], reverse=True) 101 return [word for word, freq in sorted_words[:top_n]] 102 103 def _analyze_structure(self, content: str) -> Dict[str, Any]: 104 """分析文档结构""" 105 sections = [] 106 107 # 提取标题 108 headings = re.findall(r'^(#{1,6})\s+(.+)$', content, re.MULTILINE) 109 110 for level, title in headings: 111 sections.append({ 112 'level': len(level), 113 'title': title.strip(), 114 'type': 'heading' 115 }) 116 117 # 统计段落 118 paragraphs = [p for p in re.split(r'\n\s*\n', content) if p.strip()] 119 120 return { 121 'sections': sections, 122 'paragraph_count': len(paragraphs), 123 'has_headings': len(headings) > 0 124 } 125 126 def _extract_time_info(self, content: str) -> List[str]: 127 """提取时间信息""" 128 # 匹配常见日期格式 129 date_patterns = [ 130 r'\d{4}年\d{1,2}月\d{1,2}日', 131 r'\d{4}-\d{1,2}-\d{1,2}', 132 r'\d{4}/\d{1,2}/\d{1,2}', 133 ] 134 135 dates = [] 136 for pattern in date_patterns: 137 dates.extend(re.findall(pattern, content)) 138 139 return list(set(dates)) # 去重 140 141 def _detect_language(self, content: str) -> str: 142 """检测语言""" 143 # 简单基于字符判断 144 zh_chars = len(re.findall(r'[\u4e00-\u9fff]', content)) 145 en_chars = len(re.findall(r'[a-zA-Z]', content)) 146 147 if zh_chars > en_chars: 148 return 'zh' 149 elif en_chars > zh_chars: 150 return 'en' 151 else: 152 return 'mixed' 153 154 def _has_tables(self, content: str) -> bool: 155 """判断是否包含表格""" 156 # Markdown表格 157 if re.search(r'|.*|.*\n|[-:\s|]+|', content): 158 return True 159 # HTML表格 160 if re.search(r'<table[^>]*>', content, re.IGNORECASE): 161 return True 162 return False 163 164 def _has_code_blocks(self, content: str) -> bool: 165 """判断是否包含代码块""" 166 return bool(re.search(r'``[`[\s\S]*?`](https://xplanc.org/primers/document/zh/03.HTML/EX.HTML%20%E5%85%83%E7%B4%A0/EX.s.md)``', content)) 167 168 def _get_file_mtime(self, file_path: str) -> str: 169 """获取文件修改时间""" 170 mtime = os.path.getmtime(file_path) 171 return datetime.fromtimestamp(mtime, self.zh_timezone).isoformat() 172 173 def _calculate_content_hash(self, content: str) -> str: 174 """计算内容哈希值""" 175 return hashlib.md5(content.encode('utf-8')).hexdigest() 176
2.4 完整的文档处理流水线
1class DocumentProcessingPipeline: 2 """文档处理流水线""" 3 4 def __init__(self, 5 chunk_size: int = 1000, 6 chunk_overlap: int = 200): 7 8 self.parser = MultiFormatDocumentParser() 9 self.chunker = SmartChunker(chunk_size, chunk_overlap) 10 self.metadata_extractor = MetadataExtractor() 11 12 def process_document(self, file_path: str) -> Dict[str, Any]: 13 """处理单个文档""" 14 15 print(f"开始处理文档: {file_path}") 16 17 # 1. 解析文档 18 raw_documents = self.parser.parse_document(file_path) 19 20 if not raw_documents: 21 raise ValueError(f"无法解析文档: {file_path}") 22 23 # 2. 合并所有页面/部分的内容 24 full_content = "\n\n".join([doc.page_content for doc in raw_documents]) 25 26 # 3. 提取文档级元数据 27 doc_type = os.path.splitext(file_path)[1][1:].lower() 28 document_metadata = self.metadata_extractor.extract_document_metadata( 29 full_content, file_path, doc_type 30 ) 31 32 # 4. 智能分块 33 chunks = self.chunker.semantic_chunking(full_content, doc_type) 34 35 # 5. 为每个块添加元数据 36 processed_chunks = [] 37 for i, chunk_content in enumerate(chunks): 38 chunk_metadata = document_metadata.copy() 39 chunk_metadata.update({ 40 'chunk_id': i + 1, 41 'chunk_index': i, 42 'chunk_length': len(chunk_content), 43 'is_first_chunk': i == 0, 44 'is_last_chunk': i == len(chunks) - 1, 45 }) 46 47 # 创建Document对象 48 chunk_doc = Document( 49 page_content=chunk_content, 50 metadata=chunk_metadata 51 ) 52 processed_chunks.append(chunk_doc) 53 54 # 更新文档级元数据 55 document_metadata['chunk_count'] = len(processed_chunks) 56 57 print(f"文档处理完成: {file_path}, 生成 {len(processed_chunks)} 个块") 58 59 return { 60 'document_metadata': document_metadata, 61 'chunks': processed_chunks, 62 'original_path': file_path 63 } 64 65 def process_directory(self, 66 directory_path: str, 67 extensions: List[str] = None) -> List[Dict[str, Any]]: 68 """批量处理目录中的文档""" 69 70 if extensions is None: 71 extensions = ['.pdf', '.docx', '.txt', '.md', '.html'] 72 73 all_results = [] 74 75 for root, _, files in os.walk(directory_path): 76 for file in files: 77 file_path = os.path.join(root, file) 78 ext = os.path.splitext(file)[1].lower() 79 80 if extensions and ext not in extensions: 81 continue 82 83 try: 84 result = self.process_document(file_path) 85 all_results.append(result) 86 except Exception as e: 87 print(f"处理文件失败 {file_path}: {str(e)}") 88 continue 89 90 print(f"目录处理完成,共处理 {len(all_results)} 个文档") 91 return all_results 92 93# 使用示例 94pipeline = DocumentProcessingPipeline( 95 chunk_size=1000, 96 chunk_overlap=200 97) 98 99# 处理单个文档 100result = pipeline.process_document("document.pdf") 101 102# 处理整个目录 103results = pipeline.process_directory( 104 "./knowledge_base", 105 extensions=['.pdf', '.docx', '.md', '.txt'] 106) 107 108# 提取所有块 109all_chunks = [] 110for result in results: 111 all_chunks.extend(result['chunks']) 112 113print(f"总共生成 {len(all_chunks)} 个文本块") 114
三、性能优化和最佳实践
3.1 并行处理加速
1import concurrent.futures 2from tqdm import tqdm 3 4class ParallelDocumentProcessor: 5 """并行文档处理器""" 6 7 def __init__(self, max_workers: int = 4): 8 self.pipeline = DocumentProcessingPipeline() 9 self.max_workers = max_workers 10 11 def process_batch(self, file_paths: List[str]) -> List[Dict[str, Any]]: 12 """批量并行处理文档""" 13 14 results = [] 15 16 with concurrent.futures.ProcessPoolExecutor( 17 max_workers=self.max_workers 18 ) as executor: 19 # 提交任务 20 future_to_file = { 21 executor.submit(self.pipeline.process_document, fp): fp 22 for fp in file_paths 23 } 24 25 # 处理结果 26 for future in tqdm( 27 concurrent.futures.as_completed(future_to_file), 28 total=len(file_paths), 29 desc="处理文档" 30 ): 31 file_path = future_to_file[future] 32 try: 33 result = future.result() 34 results.append(result) 35 except Exception as e: 36 print(f"处理失败 {file_path}: {str(e)}") 37 38 return results 39
3.2 增量更新处理
1class IncrementalIndexUpdater: 2 """增量索引更新器""" 3 4 def __init__(self, index_storage_path: str): 5 self.index_storage_path = index_storage_path 6 self.processed_files = self._load_processed_files() 7 8 def _load_processed_files(self) -> Dict[str, str]: 9 """加载已处理文件记录""" 10 record_file = os.path.join(self.index_storage_path, "processed_files.json") 11 12 if os.path.exists(record_file): 13 with open(record_file, 'r', encoding='utf-8') as f: 14 return json.load(f) 15 return {} 16 17 def _save_processed_files(self): 18 """保存已处理文件记录""" 19 record_file = os.path.join(self.index_storage_path, "processed_files.json") 20 with open(record_file, 'w', encoding='utf-8') as f: 21 json.dump(self.processed_files, f, ensure_ascii=False, indent=2) 22 23 def get_changed_files(self, 24 directory_path: str, 25 extensions: List[str] = None) -> List[str]: 26 """获取有变化的文件""" 27 28 changed_files = [] 29 30 for root, _, files in os.walk(directory_path): 31 for file in files: 32 file_path = os.path.join(root, file) 33 ext = os.path.splitext(file)[1].lower() 34 35 if extensions and ext not in extensions: 36 continue 37 38 # 检查文件是否已处理或有更新 39 file_hash = self._calculate_file_hash(file_path) 40 41 if (file_path not in self.processed_files or 42 self.processed_files[file_path] != file_hash): 43 changed_files.append(file_path) 44 self.processed_files[file_path] = file_hash 45 46 return changed_files 47 48 def _calculate_file_hash(self, file_path: str) -> str: 49 """计算文件哈希""" 50 hasher = hashlib.md5() 51 52 with open(file_path, 'rb') as f: 53 buf = f.read(65536) 54 while len(buf) > 0: 55 hasher.update(buf) 56 buf = f.read(65536) 57 58 return hasher.hexdigest() 59
四、常见问题与解决方案
问题1:文档格式兼容性
解决方案:使用多个解析库,并实现降级策略
1def robust_pdf_parsing(file_path: str): 2 """鲁棒的PDF解析""" 3 parsers = [PyPDFLoader, UnstructuredPDFLoader] 4 5 for parser_class in parsers: 6 try: 7 loader = parser_class(file_path) 8 return loader.load() 9 except Exception as e: 10 continue 11 12 # 降级到文本提取 13 try: 14 import textract 15 text = textract.process(file_path).decode('utf-8') 16 return [Document(page_content=text, metadata={'source': file_path})] 17 except: 18 raise ValueError(f"无法解析PDF文件: {file_path}") 19
问题2:中文文档分块效果不佳
解决方案:使用专门的中文分块器
1class ChineseTextSplitter: 2 """中文文本分块器""" 3 4 def __init__(self, chunk_size=500, chunk_overlap=50): 5 self.chunk_size = chunk_size 6 self.chunk_overlap = chunk_overlap 7 8 def split_text(self, text: str) -> List[str]: 9 # 使用中文标点进行分割 10 separators = ['\n\n', '\n', '。', '!', '?', ';', '……', '…', ',', '、'] 11 12 chunks = [] 13 current_chunk = "" 14 15 # 按句子分割 16 sentences = self._split_into_sentences(text) 17 18 for sentence in sentences: 19 if len(current_chunk) + len(sentence) <= self.chunk_size: 20 current_chunk += sentence 21 else: 22 if current_chunk: 23 chunks.append(current_chunk) 24 current_chunk = sentence 25 26 if current_chunk: 27 chunks.append(current_chunk) 28 29 return chunks 30 31 def _split_into_sentences(self, text: str) -> List[str]: 32 """将中文文本分割成句子""" 33 import re 34 # 中文句子分割规则 35 pattern = r'([。!?;…]+\s*)' 36 parts = re.split(pattern, text) 37 38 sentences = [] 39 for i in range(0, len(parts)-1, 2): 40 sentence = parts[i] + (parts[i+1] if i+1 < len(parts) else '') 41 if sentence.strip(): 42 sentences.append(sentence) 43 44 return sentences 45
五、实战:构建完整的RAG索引系统
1class CompleteRAGIndexer: 2 """完整的RAG索引构建系统""" 3 4 def __init__(self, 5 embedding_model=None, 6 vector_store=None): 7 8 self.pipeline = DocumentProcessingPipeline() 9 self.parallel_processor = ParallelDocumentProcessor() 10 self.updater = IncrementalIndexUpdater("./vector_store") 11 12 self.embedding_model = embedding_model 13 self.vector_store = vector_store 14 15 def build_index(self, 16 knowledge_base_path: str, 17 incremental: bool = True) -> Dict[str, Any]: 18 """构建知识库索引""" 19 20 print("开始构建RAG索引...") 21 22 # 1. 获取需要处理的文件 23 if incremental: 24 files_to_process = self.updater.get_changed_files( 25 knowledge_base_path, 26 extensions=['.pdf', '.docx', '.md', '.txt', '.html'] 27 ) 28 print(f"增量更新: 发现 {len(files_to_process)} 个变更文件") 29 else: 30 # 获取所有文件 31 all_files = [] 32 for root, _, files in os.walk(knowledge_base_path): 33 for file in files: 34 if file.lower().endswith(('.pdf', '.docx', '.md', '.txt', '.html')): 35 all_files.append(os.path.join(root, file)) 36 files_to_process = all_files 37 38 if not files_to_process: 39 print("没有需要处理的文件") 40 return {'status': 'no_changes', 'chunks': []} 41 42 # 2. 并行处理文档 43 processing_results = self.parallel_processor.process_batch(files_to_process) 44 45 # 3. 提取所有文本块 46 all_chunks = [] 47 for result in processing_results: 48 all_chunks.extend(result['chunks']) 49 50 print(f"总共生成 {len(all_chunks)} 个文本块") 51 52 # 4. 生成向量嵌入 53 if self.embedding_model and self.vector_store: 54 print("开始生成向量嵌入...") 55 56 texts = [chunk.page_content for chunk in all_chunks] 57 metadatas = [chunk.metadata for chunk in all_chunks] 58 59 embeddings = self.embedding_model.embed_documents(texts) 60 61 # 存储到向量数据库 62 self.vector_store.add_embeddings( 63 texts=texts, 64 embeddings=embeddings, 65 metadatas=metadatas 66 ) 67 68 print("向量索引构建完成") 69 70 # 5. 保存处理记录 71 self.updater._save_processed_files() 72 73 return { 74 'status': 'success', 75 'total_chunks': len(all_chunks), 76 'processed_files': len(files_to_process), 77 'chunks': all_chunks 78 } 79 80# 使用示例 81if __name__ == "__main__": 82 # 初始化组件 83 from langchain.embeddings import OpenAIEmbeddings 84 from langchain.vectorstores import Chroma 85 86 embedding_model = OpenAIEmbeddings() 87 vector_store = Chroma( 88 persist_directory="./chroma_db", 89 embedding_function=embedding_model 90 ) 91 92 # 构建索引 93 indexer = CompleteRAGIndexer( 94 embedding_model=embedding_model, 95 vector_store=vector_store 96 ) 97 98 # 首次全量构建 99 result = indexer.build_index( 100 knowledge_base_path="./knowledge_base", 101 incremental=False 102 ) 103 104 # 后续增量更新 105 result = indexer.build_index( 106 knowledge_base_path="./knowledge_base", 107 incremental=True 108 ) 109
六、总结与展望
文档解析是RAG系统的基石,一个优秀的解析系统应该具备:
- 1. 多格式支持:能处理各种常见文档格式
- 2. 智能分块:理解文档结构,保持语义完整性
- 3. 丰富元数据:提取有用信息辅助检索
- 4. 高效处理:支持并行和增量更新
- 5. 鲁棒性:能处理各种异常情况
随着大模型技术的发展,未来的文档解析会更加智能化,比如:
- • 使用视觉模型解析复杂版式
- • 利用大模型理解文档语义结构
- • 自动识别文档类型和领域
- • 智能提取表格、图表等非文本内容
希望本文对你构建自己的RAG系统有所帮助!记住,好的开始是成功的一半,精心设计的文档解析流程会让你的RAG系统事半功倍。
《RAG索引流程详解:如何高效解析文档构建知识库》 是转载文章,点击查看原文。